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Abstract An underdetermined linear algebraic equation system y = �x, where �

is an m × n(m < n) rectangular constant matrix with rank r ≤ m and y ∈ Ran(�)

(range of �), has an infinite number of solutions. Diffeomorphic modulation under
observable response preserving homotopy (D-MORPH) regression seeks a solution
satisfying the extra requirement of minimizing a chosen cost function,K. A wide vari-
ety of choices of the cost functionmakes it possible to achieve diverse goals, and hence
D-MORPH regression has been successfully applied to solve a range of problems. In
this paper, D-MORPH regression is extended to determine a sparse or a nonnegative
sparse solution of the vector x. For this purpose, recursive reweighted least-squares
(RRLS) minimization is adopted and modified to construct the cost function K for
D-MORPH regression. The advantage of sparse and nonnegative sparse D-MORPH
regression is that the matrix � does not need to have row-full rank, thereby enabling
flexibility to search for sparse solutions xwith ancillary properties in practical applica-
tions. These tools are applied to (a) simulation data for quantum-control-mechanism
identification utilizing high dimensional model representation (HDMR)modeling and
(b) experimental mass spectral data for determining the composition of an unknown
mixture of chemical species.
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1 Introduction

The linear algebraic equation system

y = �x, (1)

where � is an m × n(m < n) rectangular constant matrix with rank r(r ≤ m), and
y ∈ Ran(�) (range of �), is underdetermined and has an infinite number of solutions
x composing an (n − r)-dimensional completely connected manifold M. “In the
absence of any other information, any solution of Eq. 1 has an equal preference over
all others. However, many scientific applications work under the condition that the
desired solution x ∈ M is either sparse or well approximated by a sparse vector(s)”
[1]. Hereafter, we denote that a vector x has sparsity k (or is k-sparse) if it has at most
k nonzero elements. Since � has rank r , Eq. 1 may be r -sparse. It can be proved that
the sparse solutions x ∈ M of Eq. 1 are those with minimal �0 or �1 norm [1–5]:

x = argmin
x∈M

‖x‖�p , (2)

where p = 0, 1. Here the �p norm is defined as

‖x‖�p =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
n∑

i=1

|xi |p
)1/p

, 0 ≤ p < ∞,

max
i=1,...,n

|xi |, p = ∞.

(3)

Solving underdetermined systems by �1-minimization is the heart of many numer-
ical algorithms for approximation, compression, and statistical estimation when there
is a k-sparse solution for Eq. 1. Under certain assumptions on � and y, Eq. 2 has a
unique solution x∗, whichmay be found by linear programming [1,6,7].More efficient
and simpler algorithms than standard linear programming have also been considered
[8,9].

Daubechies et al. proposed an alternative method of determining x∗. They proved
that if Eq. 2 has a solution x∗ with minimal �1 norm and no vanishing elements, then
the unique solution xw of the weighted least-squares problem

xw = argmin
x∈M

J (w, x) = argmin
x∈M

1

2

n∑

i=1

wi x
2
i , (4)
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where
w = (w1, w2, . . . , wn), wi = |x∗

i |−1

given by
xw = W−1�T (�W−1�T )−1y (5)

coincides with x∗ when � satisfies the restricted isometry property (RIP) [1]. Here,
W = diag(w1, w2, . . . , wn). Since x∗ is unknown, this observation cannot be directly
used. However, it leads to the following paradigm for finding x∗: (1) choose a starting
weight w0 and solve Eq. 4 with this weight, (2) use the solution x(1) to define a new
weight w1 and repeat this process. This method is referred as iteratively reweighted
least-squares (IRLS)minimization.Daubechies et al. [1] proved thatwhen the solution
x(n) at the (n − 1)th step is sufficiently close to the limit, the remaining steps of the
algorithm converge exponentially fast (i.e., linear convergence in the terminology of
numerical optimization).

Yagle [2] proposed a variant of IRLS to minimize

‖x‖p
p =

n∑

i=1

1

|xi |2−p
x2i (6)

recursively, not iteratively, by slightly reducing the norm order p by δ(0 < δ < 1) at
each recursion. At step l(0, 1, . . . , 2/δ), the weight w is set to be

wi = 1

|x (l)
i |lδ + ε

, i = 1, 2, . . . , n, (7)

where x(l) is the solution of weighted least-squares regression at step l − 1, and ε is a
small number (e.g., 10−5, 10−7) to avoid a singularity when x (l)

i = 0. Initially (l = 0)
the objective function

J (w, x) = 1

2

n∑

i=1

wi x
2
i ≈ 1

2

n∑

i=1

x2i (8)

corresponds tominimizing the �2 normof x giving the least-squares regression solution
x(1) of Eq. 1. Substituting the resultant vector x(1) into Eq. 7 to construct new wi ’s,
then x(2) is obtained from Eq. 5. The treatment is repeated until l = 2/δ. The objective
function at the final step

J (w, x) = 1

2

n∑

i=1

x2i

|x (2/δ)
i |2 + ε

≈ 1

2

n∑

i=1

|xi |0 (9)

equals one half of the number of nonzero xi ’s. Minimizing J (w, x) implies that the
number of nonzero xi ’s is minimal, i.e., the sparsest solution of x. This result is valid
if x(2/δ) converges to the sparsest solution x. If convergence is not satisfactory, one can
reduce δ. No strict proof of convergence for this recursive reweighted least-squares
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(RRLS) procedure has been given. Nevertheless, RRLSminimization often converges
in practice. The advantage of RRLS minimization is that only a few recursions are
typically needed. For example, if setting δ = 0.2, only ten recursions are performed.
Furthermore, making some modification (shown in the next section) in the definition
of J (w, x), the solution x is not only sparse, but also only has nonnegative elements,
which is relevant in some applications.

Both IRLS and RRLS minimizations used Eq. 5 to find the weighted least-squares
solution xw, which requires that � is of row-full rank. Even if � satisfies this con-
dition, the matrix �W−1�T can be close to singular, and evaluation of the inverse
(�W−1�T )−1 may cause a large error. This shortcoming can be avoided by using
D-MORPH regression which uses singular value decomposition without the require-
ment of � having row-full rank. This is beneficial in practical applications where the
row-full rank of � may not be guaranteed. Thus, in the present paper we propose a
new method which combines D-MORPH regression and RRLS minimization. The
weight used in RRLS minimization is adopted and modified in the construction of the
cost functionK for D-MORPH regression to find either a sparse or nonnegative sparse
solution.

High dimensional model representation (HDMR) is a general set of tools to
treat high dimensional input–output behavior [10–12]. As the contributions of the
d-dimensional input variables z upon the output f (z) can be independent and coop-
erative, HDMR expresses f (z) as a finite hierarchical expansion:

f (z) = f0 +
∑

∅	=u⊆d

fu(zu), (10)

where u ⊆ {1, 2, . . . , d} (for simplicity, we will write it as u ⊆ d), and zu are the
variables in zwhose indexes are in u. In practice, the HDMR component functions are
approximated by suitable basis functions, and f (z) becomes a linear combinations of
these basis functions

f (z) = f0 +
∑

∅	=u⊆d

ku∑

k=1

cukφuk(zu), (11)

here cuk’s are constant combination coefficients, ku is an integer, φuk(zu)’s are poly-
nomials, splines, etc. If m points of the input–output data are sampled, i.e.,

f (z(s)) = f0 +
∑

∅	=u⊆d

ku∑

k=1

cukφuk(z(s)
u ), s = 1, 2, . . . ,m, (12)

setting y(s) = f (z(s)) − f0 and x being all combination coefficients cuk’s, Eq. 12 just
gives Eq. 1 when m is less than the total number n of coefficients cuk’s.

The cuk’s can be determined by solving Eq. 1 with regression. Generally, the total
number n of coefficients cuk’s is large. Consider an example of d = 10 variables. If the
3rd order truncated HDMR expansion is used with polynomial basis functions having
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degree up to 3, the total number n of coefficients cuk’s is 3675. When the extended
basis is used for correlated variables [12], the total number of coefficients cuk’s is even
larger. To accurately determine these unknown coefficients by least-squares regression,
significantlymore data thanunknowncoefficients are needed,which is often infeasible.
Fortunately, D-MORPH regression can treat the case where the number of data is less
than the number of unknowns if the cost function K is properly chosen [13,14]. A
system with more than 3500 unknowns has been satisfactorily solved with only ∼100
data even without the requirement that the cuk’s are sparse [15].

However, for many systems the HDMR expansion is intrinsically sparse. One such
example is the quantum-control simulation given in Sect. 3. We will show that the
approach presented here of sparse and nonnegative sparse D-MORPH regression, can
be employed to find the proper solution.

The paper is organized as follows. Section 2 presents the methodology of sparse
and nonnegative sparse D-MORPH regression. In Sect. 3 two examples are used to
illustrate the application of sparse and nonnegative sparse D-MORPH regression: (1)
the mechanism identification of quantum-control simulation data is presented to illus-
trate sparse D-MORPH regression; (2) chemical composition analysis of an unknown
mixture utilizingmass spectral data is used to illustrate nonnegative sparse D-MORPH
regression. Finally, Sect. 4 presents concluding remarks.

2 Sparse and nonnegative sparse D-MORPH regressions

The principles of D-MORPH regression are briefly summarized here; further details
may be found in references [13,14].When the number n of unknown parameters (xi ’s)
is larger than the rank r of � and y ∈ Ran(�), then Eq. 1 is consistent and has an
infinite number of solutions x with the general form

x = �−y + (In − �−�)u, (13)

where In is the identity matrix of dimension n and u is an arbitrary vector in R
n , and

�− is a generalized inverse of � satisfying the condition

��−� = �. (14)

One choice for �− in Eq. 13 is �+ (which is unique) satisfying all four Penrose
conditions [16]. Then,

x = �+y + (In − �+�)u, (15)

and Eq. 15 with u = 0 (i.e., �+y) is the solution from traditional least-squares
regression with the minimal norm ‖x‖�2 .

All the solutions x of Eq. 1 given by Eq. 15 compose an (n − r)-dimensional
completely connected manifold M ⊂ R

n . D-MORPH regression seeks a solution
satisfying an extra requirement by considering an exploration path x(s) within M
with s ∈ [0,∞), described by the differential equation
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dx(s)
ds

= (In − �+�)
du(s)

ds
= (In − �+�)v(s) = Pv(s), (16)

where P is an orthogonal projector satisfying

P = P2, P = PT , P = PP = PT P. (17)

The function vector v(s) may be freely chosen to not only enable broad choices for
exploring x(s), but also provide the possibility of continuously reducing a defined cost
function K(x(s)) (e.g., the model variance, fitting smoothness, the weighted norm of
x, etc.) along the exploration path. This can be achieved by choosing the free function
as

v(s) = −∂K(x(s))
∂x

. (18)

Then, we obtain

dK(x(s))
ds

=
(

∂K(x(s))
∂x

)T dx(s)
ds

=
(

∂K(x(s))
∂x

)T

Pv(s)

= −
(

P
∂K(x(s))

∂x

)T (

P
∂K(w(s))

∂x

)

≤ 0, (19)

i.e., the cost K, used as an additional requirement, will be continuously reduced (sys-
tematically refining the model) over the exploration course for s ≥ 0. Therefore,

x∞ = lim
s→∞ x(s)

is the solution with a minimum value of K. When the cost function is defined as a
quadratic form in x

K = 1

2
xTCx, (20)

where C is symmetric and nonnegative definite, the analytical form of x∞ has been
obtained as [13]

x∞ = Vn−r (U
T
n−r Vn−r )

−1UT
n−r�

+y, (21)

where Un−r , and Vn−r are the last n − r columns of U and V obtained by singular
value decomposition of PC

PC = U

[
Sr 0
0 0

]

V T (22)

with Sr being an r -dimensional diagonal matrix of nonzero singular values.
Equation 21 is the key practical formula for the optimal solution x obtained by D-

MORPH regression to replace Eq. 5. This solution x∞ is unique inM corresponding
to the global minimum of the cost function K. As evident in Eq. 21, the solution x∞
given by D-MORPH regression is a special linear combination of the elements of x
obtained by least-squares regression (i.e., �+y).
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For sparse and nonnegative sparse solutions of D-MORPH (referred to as sD-
MORPH and nnsD-MORPH, respectively) regression, a special cost function, similar
to the objective function J (w, x) used in RRLS, is defined to minimize ‖x‖�0 . When
C is a diagonal matrix, the cost function in Eq. 20 becomes

K = 1

2

n∑

i=1

ci x
2
i . (23)

Similar to RRLS [2], we define

ci = 1

|x (l)
i |lδ + ε

, l = 0, 1, . . . , 2/δ, (24)

under the condition

x (l)
i = x (l)

i , ∀i, sD-MORPH, (25)
⎧
⎨

⎩

x (l)
i = x (l)

i , if x (l)
i ≥ 0,

nnsD-MORPH.

x (l)
i = 0, if x (l)

i < 0.
(26)

Setting x (l)
i = 0 for negative x (l)

i gives it the largest shrinkage weight 1/ε tending to
force xi to approach zero and thereby removing negative elements in the solution x
[17].

sD-MORPH and nnsD-MORPH regression is similar to RRLSminimization except
that (1) for nnsD-MORPH regression setting x (l)

i = 0 for negative x (l)
i in the weight

function, (2) using Eq. 21 to replace Eq. 5 for determining the weighted least-squares
solution x. Equation 21 uses singular value decomposition instead of the inverse
(�W−1�T )−1 to avoid a large error when �W−1�T is singular or near singular.
Equation 21 also contains a term with the inverse (UT

n−r Vn−r )
−1, but it can be proved

thatUT
n−r Vn−r is nonsingular and its inverse can be accurately determined. Therefore,

sD-MORPH and nnsD-MORPH regression is more flexible than IRLS and RRLS
minimization in searching for sparse and nonnegative sparse solutions. This is espe-
cially beneficial in practical applications where the row-full rank of � may not be
guaranteed.

3 Illustrations of sparse and nonnegative sparse D-MORPH regression

Twoexampleswill be used to illustrate the application of sparse and nonnegative sparse
D-MORPH regression. Mechanism identification of quantum-control simulation data
is presented for illustration of sparseD-MORPH regression, and chemical composition
analysis of an unknown mixture utilizing mass spectral experimental data is used for
illustration of nonnegative sparse D-MORPH regression.
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3.1 Application to mechanism identification of quantum-control simulation data

Quantum-control seeks to manipulate dynamical events at the atomic and molec-
ular scale using tailored laser fields [18]. An automatic closed-loop procedure is
often used to find laser fields that maximize a signal reflecting the yield in a desired
final state [19]. In this way quantum systems can be directed to perform a variety
of tasks. In order to gain an understanding of the dynamical mechanisms induced
by the fields in the quantum system under control, the technique of Hamiltonian
encoding and observable decoding (HE-OD) has been implemented in the labora-
tory [20–22]. Over a sequence of tailored experiments, HE-OD introduces special
encoded signatures into the spectral components of the control field, and the outcome
appears as a modulated (encoded) signal. Decoding the modulated signal identifies the
hierarchy of correlations between the components of the control field. TheHE-ODpro-
cedure yields the complex amplitudes corresponding to terms in the Dyson expansion
for the time evolution operation [22]. Identification of the hierarchy of correlations
between components of the control field from the signals can reveal the mecha-
nism [20]. This task can also be achieved by using sD-MORPH regression as shown
below.

Here we consider a simulated system used to model atomic Rb under the excitation
by a femtosecond laser pulse [22]. The simulated laser spectrum was approximately
a Gaussian centered at 780 and 40nm full width at half maximum. Under these con-
ditions, the Rb system can be approximated by a 4-level system with states |k〉 and
energies εk(k = 1, 2, 3, 4) [22]. Population can be exchanged among the various
states through the absorption or emission of a photon whose frequency corresponds to
the energy difference between the two states, which allows for controlling the various
transitions through manipulation of the spectral phases or amplitudes of the laser field.
The output signal θ was taken as the final population of state |4〉.

3.1.1 Construction of high dimensional model representation (HDMR) expansion

The phases φk(k = 1, 2, . . . , d) of selected spectral components of the laser field are
encoded [21,22], which yields N new laser pulse shapes that are then applied to drive
the evolution of the quantum systemwith the outcome in state |4〉 recoded for each laser
pulse.Note that the number of spectral phase components can be larger than the number
of transitions in Rb, as each transition has breadth generally larger than the spectral
resolution of the instrument pulse sharper. Thus, physically the effects of manipulating
the selected spectral components on the output signal depend on the proximity of their
corresponding photon energies to the electronic transition energies. Themeasurements
of the resulting observed laboratory output signals θ(s), (s = 1, 2, . . . , N ) of the
modulated quantum system can be expressed as [14]

θ(φ(s)) ≈ |a0 +
mp∑

j=1

a j e
i(mT

j φ(s))|2, (s = 1, 2, . . . , N ) (27)

where a j = r j eiϕ j ( j = 0, 1, 2, . . . ,mp) are complex numbers, and vectors
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φ(s) = ( φ1(s) φ2(s) · · · φd(s) )T , (28)

m j = (m j1 m j2 · · · m jd )T . (29)

Here the vector m j consists of (positive, zero and negative) integers m jk ∈ Z rep-
resenting different transition processes [20]. To be physically meaningful (i.e., some
transitions actually occur) m j is not a null vector (i.e., not all m jk are zero). Finally,
the number mp denotes all possible transition processes.

In practice, an a priori physically based mechanism may not be known. Hence,
we consider as many processes as possible such that Eq. 27 is big enough to likely
contain the physicallymotivated “true”mechanism.This canbe achievedby choosing a
sufficiently large integer K and including allm j ’s in Eq. 27whose �1 norms ‖m j‖�1 =
∑d

k=1 |m jk | are not larger than K . The termswith largemodulus ofa j inEq. 27 identify
the set of relevant quantum pathways (i.e., the mechanism, see references [20–22] for
a detailed physical interpretation of such mechanisms). Thus, determination of the
complex numbers a j ( j = 0, 1, . . . ,mp) corresponds to revealing the mechanism,
which is obtained in a two step process starting from the identification of the set of the
spectral correlations {α, β} (see Eq. 31) present in the output signal [22]. Under some
conditions [22], it is possible to substitute {α, β} into a system of quadratic equations
to reveal the mechanism. Below we use sD-MORPH regression to obtain {α, β} from
simulated quantum-control data.

Expanding the square modulus in Eq. 27 results in the following expression [14]:

θ(φ(s)) ≈ |r0eiϕ0 +
mp∑

j=1

r j e
iϕ j ei(m

T
j φ(s))|2 = |r0eiϕ0 +

mp∑

j=1

r j e
i(ϕ j+mT

j φ(s))|2

= a0 +
mp∑

j=1

[
a j cos

(
mT

j φ(s)
)

+ b j sin
(
mT

j φ(s)
)]

+
∑

1≤p<q≤mp

[
apq cos

(
(mp − mq )T φ(s)

)
− bpq sin

(
mp − mq )T φ(s)

)]
,

(s = 1, 2, . . . , N ) (30)

where {a, b} are real constant parameters composed of the products of r j , cos(ϕp−ϕq)

and sin(ϕp − ϕq); Somem j andmp −mq may be equal and their corresponding sine
and cosine functions will be combined together. Let the n j ’s represent all n p distinct
vectors obtained from m j and mp − mq . Then, Eq. 30 can be written as

θ(φ(s)) ≈ α0 +
n p∑

j=1

[
α j cos

(
nTj φ(s)

)
+ β j sin

(
nTj φ(s)

)]
,

(s = 1, 2, . . . , N ). (31)

The terms with large magnitudes of α j and β j reveal the important physical processes
n j resulting fromm j ormp −mq . Equation 31 shows that the relation between θ and
φ is an expansion of multi-variate discrete sine and cosine functions. Depending on the
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number of nonzero elements in n j , Eq. 31 may be divided into sine and cosine func-
tions containing 1, 2, . . . , d φk’s. The magnitudes of their coefficients {α, β} reflect
the weights of the contributions of processes n j with different numbers of nonzero
elements. Therefore, direct comparison of the magnitudes of {α, β} can provide the
information of the physically important transition processes.

Denoting φi as zi , φ as z and θ as y, then Eq. 31 can be expanded and reorganized
as

y(z) = α0 +
d∑

i=1

K∑

ni=1

[
α(i)
ni sin(ni zi ) + β(i)

ni cos(ni zi )
]

+
∑

1≤i< j≤d

K∑

ni=1

K∑

n j=−K
n j 	=0

[
α

(i j)
ni n j sin(ni zi + n j z j ) + β

(i j)
ni n j cos(ni zi + n j z j )

]

+
∑

1≤i< j<k≤d

K∑

ni=1

K∑

n j=−K
n j 	=0

K∑

nk=−K
nk 	=0

[
α

(i jk)
ni n j nk sin(ni zi + n j z j + nkzk)

+ β
(i jk)
ni n j nk cos(ni zi + n j z j + nkzk)

]
+ · · ·

+
K∑

n1=1

K∑

n2=−K
n2 	=0

· · ·
K∑

nd=−K
nd 	=0

[
α(12···d)
n1...nd sin(n1z1 + · · · + nd zd)

+β(12···d)
n1...nd cos(n1z1 + · · · + nd zd)

]
, (32)

where K is the chosen upper bound for all ni ’s. Since

sin(−nTj z) = − sin(nTj z), cos(−nTj z) = cos(nTj z),

the functions sin(−nTj z) and cos(−nTj z) are combined into sin(nTj z) and cos(nTj z),
respectively, in Eq. 32. This can be achieved by setting the first summation in each
term in Eq. 32 to be over 1 to K , not −K to K .

Equation 32 can be compactly represented as

�x = y, (33)

where

� =

⎡

⎢
⎢
⎢
⎣

ψ1(z(1)) ψ2(z(1)) . . . ψt (z(1))
ψ1(z(2)) ψ2(z(2)) . . . ψt (z(2))

...
...

. . .
...

ψ1(z(N )) ψ2(z(N )) . . . ψt (z(N ))

⎤

⎥
⎥
⎥
⎦

(34)
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and

x =
(

α0 α
(1)
1 β

(1)
1 . . . β

(1...d)
KKKK

)T
,

�s∗ =
(
1 sin(z1(s)) cos(z1(s)) . . . sin

(
K

∑d
k=1 zk(s)

)
cos

(
K

∑d
k=1 zk(s)

))
,

(s = 1, 2, . . . , N )

y = ( θ(1) θ(2) . . . θ(N ) )T .

Here, �s∗ denotes the sth row of � and n is the total number of basis functions
contained in�s∗, and consequently, the total number of unknownparameters contained
in x, N is the number of measurements.

Equation 32 can be conveniently represented as a HDMR expansion with terms
having different numbers of variables [12,23]:

y(z) = f0 +
d∑

i=1

fi (zi ) +
∑

1≤i< j≤d

fi j (zi , z j ) +
∑

1≤i< j<k≤d

fi jk(zi , z j , zk) + · · ·

+ f12...d(z) = f0 +
∑

∅	=u⊆d

fu(zu). (35)

Using the following conditions (which are approximately [21] or exactly [22] true as
required by HE-OD decoding) that for z ∈ [0, 2π ]d

E(sin(nT z)) = 0, ∀n, (36)

E(cos(nT z)) = 0, ∀n, (37)

E(sin(mT z) cos(nT z)) = 0, ∀m,n (38)

E(sin(mT z) sin(nT z)) = 0, m 	= ±n, (39)

E(cos(mT z) cos(nT z)) = 0, m 	= ±n, (40)

it is easy to prove that fu(zu) given in Eq. 32 satisfy the characteristic properties of
HDMR component functions:

E( fu(zu)) = 0, u 	= ∅, (41)

E( fu(zu) fv(zv)) = 0, u 	= v, (42)

where E denotes the expected value. Equations 41 and 42 show that the non-constant
HDMR component functions have zero mean and all HDMR component functions are
mutually orthogonal. Since all non-constant HDMR component functions have zero
mean, we have E(y(z)) = f0 [12,23].
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Upon utilizing these properties, a global sensitivity analysis can be performed based
on the HDMR expansion [23,24]. Note that

Var(y(z)) = E[(y(z) − f0)
2] = E[(

∑

∅	=u⊆d

fu(zu))2]

=
∑

∅	=u⊆d

E[ f 2u (zu)] =
∑

∅	=u⊆d

E[( fu(zu) − 0)2]

=
∑

∅	=u⊆d

Var( fu(zu)). (43)

The sensitivity indexes can be defined as

1 = Var(y(z))
Var(y(z))

=
∑

∅	=u⊆d

Var( fu(zu))
Var(y(z))

=
∑

∅	=u⊆d

Su . (44)

Since all Su ≥ 0 and
∑

u Su = 1, comparing the magnitudes of all Su’s gives the
importance order of zu , which can be also used to identify the mechanism.

3.1.2 Case I: More data than unknown parameters

A quantum-control simulation with four (d = 4) selected spectral components of the
laser field was performed. A set of 10000 points z = (z1, z2, z3, z4) were randomly
generated in the range [0, 2π ]4 and the corresponding signals y(z) = θ(z) were
calculated. The points z = (z1, z2, z3, z4) correspond to spectral components of the
field close to the transition frequencies.We set K = 2, and altogether there are n = 625
unknown parameters x in Eq. 33 corresponding to possiblemechanistic processes. Our
goal is to find the key processes in the mechanism, i.e., the sparse solution for x.

One thousand (z, y) points were used as the training data, the remained 9000 data
points were used for testing. Since the number (1000) of data is larger than the number
(625) of unknownparameter, to construct anunderdetermined linear algebraic equation
system, first the normal equation for least-squares regression of Eq. 33

�T�x = �T y (45)

was obtained where �T� may be nonsingular. Hence, the last 256 equations corre-
sponding to the fourth order HDMR component functions in Eq. 32 were removed to
give an underdetermined linear algebraic equation system [14]

Ax = b (46)

where A is a 369 × 625 constant matrix and b is a 369-dimensional constant vec-
tor. Using sD-MORPH regression and setting δ = 0.2, the sparse solution of x
was obtained after 10 recursions. The magnitudes of the unknown parameters, wi ’s,
obtained from sD-MORPH regression are between 7.13×10−2 −1.78×10−7. Many
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Table 1 The average absolute and relative errors of the HDMRmodel for training (1000 points) and testing
(9000 points) data

Method Training data Testing data

Abs. err. Rel. err. Abs. err. Rel. err.

sD-MORPH (369 parameters)

1st order 0.0147 0.2602 0.0151 0.2593

2nd order 0.0094 0.1508 0.0093 0.1475

3rd order 0.0091 0.1532 0.0090 0.1489

4th order 0.0004 0.0073 0.0007 0.0111

sD-MORPH (110 parameters)

1st order 0.0147 0.2602 0.0151 0.2593

2nd order 0.0094 0.1507 0.0093 0.1475

3rd order 0.0091 0.1534 0.0090 0.1489

4th order 0.0006 0.0096 0.0007 0.0110

RRLS(369 parameters) 0.0004 0.0073 0.0007 0.0111

RRLS(110 parameters) 0.0006 0.0096 0.0007 0.0110

parameters of the sparse solution of sD-MORPH regression are not exactly zero, but
small numbers. Considering that the values of θ were given to the 3rd digit, there-
fore, the elements, xi ’s, with magnitude less than 10−4 were considered as zero and
removed to give 110 final nonzero parameters.

The accuracy of the HDMR model obtained by sD-MORPH regression for the
training and testing data is given in Table 1. For comparison, the results obtained by
RRLS minimization is also provided. The truth plots for training and testing data for
the HDMR model are given in Fig. 1.

The sensitivity indexes given in Table 2 were also calculated from the resultant
HDMR component functions obtained by sD-MORPH regression with the 1000 train-
ing data points.

Analyzing all the results given above, some conclusions can be drawn:

• With 1000 training data the matrix A has row-full rank. The matrix AW−1AT is
nonsingular, and its inverse can be accurately determined. In this case, the results
obtained by RRLSminimization and sD-MORPH regression are exactly the same.

• The 4th order HDMR expansion with multi-variate discrete sine and cosine basis
functions obtained by sD-MORPH regression is accurate for both training and
testing data. Considering that the values of θ are given to the 3rd digit, the 4th
order HDMR expansion with 110 parameters is almost exact because the average
absolute errors are 0.0006 and 0.0007 for training and testing data, respectively.
Thus, the mechanism identified with such an accurate model is reliable.

• The discrete cosine transform (DCT) is a popular method used in signal and image
processing, which only uses cosine functions [25] because cosine functions are
reported to be much more efficient (fewer functions are needed to approximate a
typical signal). However, for the treatment of signals in quantum-control, cosine
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Fig. 1 The truth plots for training (1000 points) and testing (9000 points) data of theHDMRmodel obtained
by sD-MORPH regression for quantum control mechanism analysis

basis functions are not complete. Figure 2 gives the truth plots for training (1000
points) and testing (9000 points) data for the HDMR expansion with only cosine
basis functions obtained by sD-MORPH regression.

• The sensitivity indexes provide information about the mechanism. According to
the decreasing order of the magnitudes of the sensitivity indexes, the sum of the
four most important sensitivity indexes is 0.9338, i.e., only a few processes corre-
sponding to the four sensitivity indexes controlling the signal θ .

S2 S23 S1234 S12 Sum
0.4411 0.2147 0.1512 0.1268 0.9338

• The important processes which control the signal θ may be identified from the
magnitude order of the parameters {α, β} in Eq. 32. Table 3 gives the 10 parameters
with the largestmagnitudes. For comparison the 10 parameters obtained byHE-OD
applied to the data are also listed.
The largest four parameters (α0 is always the largest one, and is excluded) with
magnitudes larger than 10−2 belong to the processes
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Table 2 The sensitivity indexes calculated from the HDMR component functions obtained from 1000
training data

Order Sensitivity index Sum of each order

1st S1 S2 S3 S4
0.0291 0.4411 0.0354 0.0002 0.5058

2nd S12 S13 S14 S23 S24 S34
0.1268 0.0022 0.0015 0.2147 0.0007 0.0030 0.3489

3rd S123 S124 S134 S234
0.0067 0.0015 0.0091 0.0039 0.0212

4th S1234
0.1512 0.1512

Total sum 1.0272
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Fig. 2 The truth plots for training and testing data for theHDMRexpansionwith only cosine basis functions
obtained by sD-MORPH regression, thereby indicating the incomplete nature of just cosine basis functions

n1 = (0 1 0 0 ),

n2 = (0 1 1 0 ),

n3 = (1 −1 −1 1 ),

n4 = (1 −1 0 0 ).

Note that if the coefficient α for sin(nTj z) is large, then the coefficient β for

cos(nTj z) is also large. Since sin(−nTj z) and cos(−nTj z) are included in the terms of

sin(nTj z) and cos(n
T
j z), the processes−n j ( j = 1, 2, 3, 4) are alsomost important.

This information identifies the most important processes contributing to the signal
θ , which is consistent with the sensitivity indexes S2, S23, S1234, S12.
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Table 3 The importance order of the processes arranged by the decreasing magnitude of the corresponding
parameters in Eq. 32 obtained from 1000 training data

Importance order Basis Process Parameters {α, β}
n1 n2 n3 n4 sD-MORPH HE-OD

1 1 0 0 0 0 7.13 × 10−2 7.12 × 10−2

2 cosine 0 1 0 0 2.37 × 10−2 2.45 × 10−2

3 cosine 0 1 1 0 1.60 × 10−2 1.50 × 10−2

4 cosine 1 −1 −1 1 1.22 × 10−2 1.12 × 10−2

5 cosine 1 −1 0 0 1.09 × 10−2 1.05 × 10−2

6 sine 1 −1 −1 1 −6.97 × 10−3 −7.25 × 10−3

7 cosine 0 0 1 0 6.78 × 10−3 5.62 × 10−3

8 sine 1 −1 0 0 5.82 × 10−3 7.12 × 10−3

9 sine 0 1 0 0 4.71 × 10−3 5.42 × 10−3

10 sine 1 0 0 0 −4.70 × 10−3 −4.62 × 10−3

3.1.3 Case II: Less data than unknown parameters

Three hundred (z, y) points were used as the training data, the remaining 9700 data
points were used for testing. Since the number (300) of data is less than the number
(625) of unknown parameters, Eq. 33

�x = y

is an underdetermined linear algebraic equation system, where � is a 300 × 625
constant matrix. If y ∈ Ran(�) (this is always true when� has row-full rank), and we
may directly use sD-MORPH regression. In this case, RRLS minimization can also
apply.

However, no matter whether y ∈ Ran(�) or not, we can always use the normal
equation, Eq. 45

�T�x = �T y

because �T y ∈ Ran(�T�). Note that the 625×625 constant matrix �T� is singular
with rank not larger than 300 (i.e., it does not have row-full rank)

rank(�T�) = rank(�) ≤ 300,

permitting an infinite number of solutions. Moreover, we can use Eq. 46

Ax = b

obtained by removing the last 256 equations of the normal equation, where A is an
369 × 625 constant matrix and has a rank not larger than that of �T�. With 300
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Table 4 The average absolute
and relative errors of the HDMR
model for training (300 points)
and testing (9700 points) data

Method Training data Testing data

Abs. err. Rel. err. Abs. err. Rel. err.

sD-MORPH (Eqs. 33, 46) (369 parameters)

1st order 0.0143 0.2522 0.0151 0.2597

2nd order 0.0095 0.1546 0.0094 0.1483

3rd order 0.0092 0.1564 0.0091 0.1498

4th order 0.0000 0.0000 0.0016 0.0240

sD-MORPH (Eqs. 33, 46) (131 parameters)

1st order 0.0143 0.2523 0.0151 0.2597

2nd order 0.0095 0.1547 0.0094 0.1483

3rd order 0.0093 0.1562 0.0091 0.1498

4th order 0.0007 0.0110 0.0015 0.0241

RRLS (Eq. 33) 0.0000 0.0000 0.0016 0.0240

RRLS (Eq. 46) 0.4054 6.8982 0.4135 6.8089

training data, A does not have row-full rank, but contains all the solutions of Eq. 45
including the sparsest solution [14]. Therefore, when the number of data is less than
the number of unknown parameters, both Eqs. 45 and 46 can be used for sD-MORPH
regression, but cannot be used for RRLS minimization. In practice, we may need to
treat systems not having row-full rank, and sD-MORPH regression is more flexible to
search for sparse solutions without any pre-treatment of the system.

Both Eqs. 33 and 46were used for sD-MORPH regression andRRLSminimization.
The accuracy of sD-MORPH regression is exactly the same for Eqs. 33 and 46, only
a little reduced compared to that obtained from 1000 training data. The components
of xi with magnitude less than 10−4 were considered as zero and removed to give 131
final nonzero components.

Even though the inverse AW−1AT could be computed, RRLS minimization has
a large error for Eq. 46 due to the singular nature of of AW−1AT . In contrast, sD-
MORPH regression has the same results for Eqs. 33 and 46, which implies that the
singularity of A has no influence upon sD-MORPH regression, and the construction
of an underdetermined linear algebraic equation system by removing some equations
from the normal equation is general and can be utilized for both the data, either more
or less than the unknowns.

The accuracy of the HDMRmodel for the training and testing data obtained by sD-
MORPH regression and RRLS minimization is given in Table 4. The corresponding
truth plots are given in Figs. 3 and 4.

The sensitivity indexes and the most important processes determined from the
HDMRmodel obtained by sD-MORPH regression with 300 training data are given in
Tables 5 and 6, which are almost the same as those obtained from 1000 training data
shown in Tables 2 and 3. This implies that to identify the mechanism much less exper-
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Fig. 3 The truth plots for training (300 points) and testing (9700 points) data of the HDMRmodel obtained
by sD-MORPH regression with Eq. 33 (direct application of the underdetermined linear algebraic equation
system) and Eq. 46 (the underdetermined linear algebraic equation system is obtained by removing some
equations from the normal equation). The same quality results were obtained

imental data may be needed. This advantage is beneficial for practical experimental
applications.

The extracted parameters {α, β} by sD-MORPH regression are in good agreement
with those obtained by the HE-OD technique (see Tables 3, 6), i.e., the processes
identified by sD-MORPH regression are consistent with a mechanism dominated by
two second order pathways which has been also observed in experiments under similar
conditions [22] and confirmed by a separate HE-OD analysis that used the same data
set as the one employed in this work.

3.2 Application to composition analysis from a mixture’s mass spectrum

In this section, we apply the nnsD-MORPH regression algorithm to a practical prob-
lem: composition analysis of an unknown mixture based on using time of flight (TOF)
femtosecond (fs) laser-mass spectrometry (MS). We compare the composition MS of
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Fig. 4 The truth plots for training (300 points) and testing (9700 points) data of the HDMRmodel obtained
by RRLSminimization with Eq. 33 (where� has row-full rank) and Eq. 46 (where A does not have row-full
rank), respectively. The results demonstrates that RRLS minimization can be used only for the coefficient
matrix having row-full rank

Table 5 The sensitivity indexes calculated from the HDMR component functions obtained from 300
training data

Order Sensitivity index Sum of each order

1st S1 S2 S3 S4
0.0298 0.4288 0.0344 0.0004 0.4934

2nd S12 S13 S14 S23 S24 S34
0.1249 0.0023 0.0017 0.2048 0.0006 0.0032 0.3375

3rd S123 S124 S134 S234
0.0072 0.0018 0.0097 0.0035 0.0222

4th S1234
0.1471 0.1471

Total sum 1.0002

123



1904 J Math Chem (2015) 53:1885–1914

Table 6 The importance order of the processes arranged by the decreasing magnitude of the corresponding
parameters in Eq. 32 obtained from 300 training data

Importance order Basis Process Parameters {α, β}
n1 n2 n3 n4 sD-MORPH HE-OD

1 1 0 0 0 0 7.13 × 10−2 7.12 × 10−2

2 cosine 0 1 0 0 2.37 × 10−2 2.45 × 10−2

3 cosine 0 1 1 0 1.60 × 10−2 1.50 × 10−2

4 cosine 1 −1 −1 1 1.23 × 10−2 1.12 × 10−2

5 cosine 1 −1 0 0 1.09 × 10−2 1.05 × 10−2

6 sine 1 −1 −1 1 −6.91 × 10−3 −7.25 × 10−3

7 cosine 0 0 1 0 6.75 × 10−3 5.62 × 10−3

8 sine 1 −1 0 0 5.84 × 10−3 7.12 × 10−3

9 sine 1 0 0 0 −4.72 × 10−3 −4.62 × 10−3

10 sine 0 1 0 0 4.63 × 10−3 5.42 × 10−3

a mixture against a well established or user defined spectral database to identify the
components in the unknown mixture as well as to quantitatively determine the frac-
tional concentration for each component that is present in the mixture. This section
treats the tools introduced in Sects. 1 and 2 with experimental data.

In this test, a total of 11 similar small organic compounds and an extra species
(air) are picked to establish a MS data base, which was recorded with the same laser
pulse. The MS of a mixture consisting of two species (CH2BrCl+CH2BrI) with ratio
∼1:3 was measured, which was taken as an unknown for test purposes. Since the
library size is usually much larger than the number of species in the unknown, the
solution can be considered as sparse. Moreover, the quantity of each component is
nonnegative. Therefore, nonnegative and sparse nnsD-MORPH regression is used to
identify the species present. Figure 5 shows the resultant MS for the 12 compounds
and the unknown mixture.

The experimental apparatus includes a fs laser system, a vacuum chamber, and a
TOFmass spectrometer. The fs laser system (KMlab, dragon) is capable of generating
790nm, 1mJ, sub 30 fs pulses, which are guided and tightly focused inside the vacuum
chamber to interact with the gas phase samples introduced through a leak valve. The
fragment ions are generated and extracted towards theTOFmass spectrometer detector.
Each spectrum is mass calibrated to yield an array of data containing N = 600 equally
spaced data points as shown in Fig. 5. The separation between two adjacent data
points corresponds to half m/q (mass to charge ratio) unit. Note that experimental
measurements, calibration and laser alignment cannot be performed exactly the same
for all species and unknowns. Therefore, the MS of a species in a pure sample or
mixture may have some random differences. But, the MS data were taken under the
same experimental conditions, as best as possible, to reduce the data errors.

In order to apply nnsD-MORPH regression, an underdetermined linear algebraic
equation system needs to be constructed. It is generally always possible to knowwhich
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Fig. 5 Mass spectra of 12 reference species and an unknown mixture with the same laser pulse

species in the library is not contained in the unknownmixture. This can be achieved by
observing that the mixture’s spectrum does not contain characteristic peaks belonging
to certain species. For instance, in the above example we are sure that the unknown
mixture does not contain air. Then, air is specifically included in the library as a means
to construct the underdetermined linear algebraic equation system.

3.2.1 Construction of underdetermined linear algebraic equation system

We first treated the mixture analysis problem by its straight forward nnsD-MORPH
procedure. The results will show that a modification of the procedure is needed, as
presented in Sect. 3.2.2, in order to obtain reliable performance. Under the assumption
that the MS signal z(k) for an unknown mixture at the kth value of m/q, is the
superposition of signals of its components at the same kth value of m/q, we have

z(k) =
n∑

i=1

xi zi (k) + ε(k), k = 1, 2, . . . , N (47)

where zi (k) is the signal of the pure i th (i = 1, 2, . . . , n) component in the library, the
coefficient xi denotes its fraction in the unknownmixture, and ε(k) is the random error
caused by measurement, calibration, laser alignment etc. Suppose that the signals at
N distinct values of m/q are measured, then Eq. 47 can be written as
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or in a compact form
z = [

Z0 | zn
]
x + ε, (49)

where z, ε and x are N - and n-dimensional vectors, respectively; Z0 is an N × (n −
1) constant matrix composed of the first n − 1 columns of the matrix in Eq. 48
corresponding to the signals of the species in the library which may be contained in
the mixture, and zn is the last column of the matrix corresponding to the signals of a
species for sure not contained in the mixture according to our prior knowledge of the
mixture and observation of its MS. For the reference species library given in Fig. 5,
N = 600, n = 12 and the order of zi (i = 1, 2, . . . , n) is chosen to be the order given
in the figure such that zn is the “signal” of air.

Since N > n, to determine the composition vector x by nnsD-MORPH regression,
the normal equation of Eq. 49 for the least-squares regression

[
ZT
0 Z0 ZT

0 zn
zTn Z0 zTn zn

]

x =
[
ZT
0 z

zTn z

]

(50)

is obtained first. To construct an underdetermined linear algebraic equation system
used in nnsD-MORPH regression, the last equation is removed from Eq. 50 to give

[
ZT
0 Z0 ZT

0 zn
]
x = ZT

0 z. (51)

The removal of the last equationwill not influence the correct determination ofmixture
composition because we know that the mixture does not contain the last species (air,
in the example), and the value of xn should be zero. Equation 51 can be written as

Ax = b, (52)

where A is an ((n − 1) × n)-rectangular matrix, b is an (n − 1)-dimensional vector.
The correct mixture composition can be found by nnsD-MORPH regression if and

only if the combination vector x with some zero elements belongs to the infinite
number of solutions in M for Eq. 52. If not, nnsD-MORPH regression is unable to
find the correct solution. As a test, a mixture was constructed with the combination

0.25 CH2BrCl + 0.75 CH2BrI

and the mass spectrum of the artificial mixture is calculated from the the measured
MS of CH2BrCl and CH2BrI. In this case,

x = (0 0 0.25 0.75 0 0 0 0 0 0 0 0 )
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is a solution of Eq. 52, and nnsD-MORPH regression should give this correct answer.
The recursion parameter δ and ε are set to be 0.2 and 10−7, respectively, and 10
recursions were performed. The nnsD-MORPH regression did find the correct sparse
solution as above.

Since there exist errors in MS data, the mass spectrum of a unknown mixture is not
an exact superposition of the mass spectra of its components. The expected solution
x of the mixture (CH2BrCl:CH2BrI = x3 : x4 ≈ 1 : 3)

x = (0 0 ∼ 0.25 ∼ 0.75 0 0 0 0 0 0 0 0 )

is not a solution inM. Using nnsD-MORPH regression cannot accurately find such a
nonnegative sparse solution. Setting δ = 0.2 and ε = 10−7, the solution obtained by
nnsD-MORPH regression is

x1 x2 x3 x4 x5 x6

0.001 0.005 0.182 0.704 0.019 0.001

x7 x8 x9 x10 x11 x12

0.009 −0.073 0.006 0.001 0.033 −0.004

The problem of treating error contaminated data identified here is addressed in the
section below.

3.2.2 Sequential determination of nonnegative and sparse solution for mixture
composition

To correctly determine the composition of an unknown mixture, a sequential determi-
nation procedure is employed. Instead of determining the single most sparse solution,
we find the best solutions for each given level of sparsity. The basic concept behind of
the modification for nnsD-MORPH regression is based on the following observations:

• When mass spectral data have errors, nnsD-MORPH regression cannot readily
identity the correct sparse solution. Since A in Eq. 52 is an (m × n)-rectangular
matrix (in the current case, m = n − 1), the solution x can have a sparsity m with
n − m (in the current case, 1) small numbers which might be zero when the mass
spectra data do not have errors.

• The small numbers in x reflecting various data errors suggest that the correspond-
ing species are likely to be absent in the mixture. If so, removing these species
from the reference species library will not significantly change the combination
coefficients of the other remaining species obtained from a reduced species library.
Thus, these species deemed irrelevant are removed step-by-step. In each step, the
species with the smallest magnitude of combination coefficients is removed. If
removing a species causes significant changes of the remaining combination coef-
ficients determined from the reduced species library, this species is not considered
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irrelevant at least at this point in the procedure and will be retained. In the overall
process, the species air (known to not be present) is always kept to construct the
underdetermined linear algebraic equation system, Eq. 52.

• When there is no remaining species to remove, i.e., the magnitudes of all nonzero
combination coefficients are not smaller than a chosen threshold (depending on
an estimate of the experimental errors), the removal process stops and the final
sparsest solution is obtained.

The sequential data analysis procedure for the test case is given below. The
first species to be removed from the library is CH2I2 with the smallest magnitude
x6 = 0.0006. Then, the library contains 11 species. After removing the last equation
for air, we obtain a (10 × 11)-dimensional matrix A (i.e., m = 10). CHBrCl2 with
the smallest magnitude x10 = 0.0001 in the solution is the next removed species. The
process of removing a species from the library continues until m = 4. The removed
species are in the order of x6, x10, x1, x2, x9, x7, x11. Table 7 gives the resultant com-
bination coefficients for m = 11, 10, . . . , 4. The average absolute and relative errors
of the signals for the mixture predicted by the nnsD-MORPH regression solutions
with m = 11, 10, . . . , 4 are given in Table 8. All combination coefficients should be
nonnegative, but some combination coefficients with small magnitudes are still neg-
ative which implies that the largest shrinkage weight 1/ε setting for negative xi (ci
has the maximum value 1/ε when setting x (l)

i = 0 for negative x (l)
i ) may not be large

enough.
The truth plots for the signals of the mixture’s mass spectrum predicted by nnsD-

MORPH regression with m = 11 and m = 4 are given in Fig. 6. The accuracy for m
from 11 to 4 is almost the same. Since the remaining combination coefficients and the
average absolute and relative errors in the whole process do not change significantly,
we may draw the conclusion: all removed species are not contained in the mixture.

Considering the data error (the signal z(k) is given to the 3 digit), the difference
between the magnitudes of x5(0.0576) and x8(−0.0563) in Table 7 with m = 4 is
not significant, and either one may be removed first in the next iterative step. When
x5 is removed first, the resultant combination coefficients determined in the following
reduced species libraries and the corresponding average absolute and relative errors
for m = 4, 3, 2 are given in Tables 9 and 10.

From Table 9 we see that after removing CH2Cl2 (x5) from m = 4, the remaining
combination coefficients in m = 3 do not contain qualitative changes. Therefore,
CH2Cl2(x5) may be considered as an irrelevant species. Similarly, CHBr2Cl (x8) was
removed from m = 3 to give a solution with two species CH2BrCl (x3 = 0.2052) and
CH2BrI (x4 = 0.6987). Since 0.2052 and 0.6987 are not small, it is not reasonable to
further remove any species, and the final sparsest solution has been obtained. Figure 7
gives the truth plot for the mixture’s signal given by the solution of nnsD-MORPH
regression with CH2BrCl and CH2BrI only. The ratio x4/x3 = 3.4050 is close to the
experiment value.

As another test of the procedure, instead of the last two sequential steps above, we
start by removing CHBr2Cl (x8) first from m = 4. The results are given in Tables 11
and 12.
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Table 8 The average absolute and relative errors of the signals for the mixture’s MS predicted by nnsD-
MORPH regression with m = 11, 10, . . . , 4 library members (without air)

m 11 10 9 8 7 6 5 4

Abs. 0.009 0.009 0.009 0.009 0.009 0.009 0.010 0.010

Rel. 0.137 0.173 0.174 0.174 0.173 0.171 0.178 0.174
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Fig. 6 Comparison of truth plots for the mixture’s MS signals predicted by nnsD-MORPH regression with
m = 11 and m = 4. No significant difference can be found

Table 9 The solutions obtained
by nnsD-MORPH regression for
m = 4, 3, 2 starting with
removing CH2Cl2 (x5)

Compound m = 4 m = 3 m = 2

C4H7Cl x1 0.0000 0.0000 0.0000

CH2Br2 x2 0.0000 0.0000 0.0000

CH2BrCl x3 0.1721 0.2203 0.2052

CH2BrI x4 0.7112 0.7073 0.6987

CH2Cl2 x5 0.0576 0.0000 0.0000

CH2I2 x6 0.0000 0.0000 0.0000

CH2ICl x7 0.0000 0.0000 0.0000

CHBr2Cl x8 −0.0563 −0.0661 0.0000

CHBr3 x9 0.0000 0.0000 0.0000

CHBrCl2 x10 0.0000 0.0000 0.0000

CHCl3 x11 0.0000 0.0000 0.0000

Air x12 −0.0008 −0.0002 0.0000

Table 10 The average absolute
and relative errors of
nnsD-MORPH regression
solutions with m = 4, 3, 2
starting with removing CH2Cl2
(x5)

Remaining species

x3, x4, x5, x8 x3, x4, x8 x3, x4

Abs. error 0.010 0.010 0.016

Rel. error 0.174 0.175 0.244
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Fig. 7 The truth plot for the nonnegative sparse solution with CH2BrCl and CH2BrI only

Table 11 The solutions
obtained by nnsD-MORPH
regression for m = 4, 3, 2
starting from removing
CHBr2Cl (x8)

Compound m = 4 m = 3 m = 2

C4H7Cl x1 0.0000 0.0000 0.0000

CH2Br2 x2 0.0000 0.0000 0.0000

CH2BrCl x3 0.1721 0.1010 0.0000

CH2BrI x4 0.7112 0.7103 0.7219

CH2Cl2 x5 0.0576 0.1307 0.2486

CH2I2 x6 0.0000 0.0000 0.0000

CH2ICl x7 0.0000 0.0000 0.0000

CHBr2Cl x8 −0.0563 0.0000 0.0000

CHBr3 x9 0.0000 0.0000 0.0000

CHBrCl2 x10 0.0000 0.0000 0.0000

CHCl3 x11 0.0000 0.0000 0.0000

Air x12 −0.0008 0.0002 0.0000

Table 12 The average absolute
and relative errors of
nnsD-MORPH regression
solutions with m = 4, 3, 2
starting from removing
CHBr2Cl (x8)

Remaining species

x3, x4, x5, x8 x3, x4, x5 x4, x5

Abs. error 0.010 0.013 0.015

Rel. error 0.174 0.206 0.197

Table 11 shows that removing x8 caused some qualitative change: x5 becomes the
second important component increasing significantly from 0.0576 to 0.1307. This
implies that we cannot consider CHBr2Cl (x8) as an irrelevant species in this appli-
cation of the scheme. Therefore, its removal is not proper even though the resultant
solution with 3 species (CH2BrCl (0.1010), CH2BrI (0.7103) and CH2Cl2 (0.1307))
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Fig. 8 Changes of average difference d(m) between the nonzero elements given by nnsD-MORPH regres-
sion before and after removing one species from the library

has good accuracy for the mixture’s signal, and we still cannot consider it as the
correct final solution. If we further remove CH2BrCl (x3) (this is improper because
x3 = 0.1010 is not a small number and we cannot consider it as an irrelevant species),
the resultant solution with two species CH2BrI (0.7219) and CH2Cl2 (0.2486) has an
even better accuracy than that for themixture CH2BrCl (0.2052) andCH2BrI (0.6987),
but this solution is not proper.

Figure 8 gives the changes of the quantity d(m) in the removal process defined as

d(m) =
12∑

i=1
xi (m) 	=0

|xi (m + 1) − xi (m)|/(m + 1), m = 10, 9, . . . , 2, (53)

where x(m) is the solution of nnsD-MORPH regression obtained from the library with
m + 1 species. d(m) represents the average difference between the nonzero elements
of x obtained by nnsD-MORPH regression before and after removing one species.
The d(m) does not change much before m = 4 which implies that removing one
species from the library does not significantly change the values of the combination
coefficients for the remaining species. After m = 4, however, starting from removal
of CHBr2Cl (x8) there is a significant increase of d(m), which implies that at this
step in the process the removal of CHBr2Cl (x8) is improper. In contrast, starting with
removing CH2Cl2 (x5) does not significantly increase d(m), which leads to the correct
two component solution (CH2BrCl (0.2052) and CH2BrI (0.6987)).

The algorithm for mixture analysis, Knowitall [26], analyzed the test data set and
gave possible solutions arranged according to fitting accuracy shown in Table 13. The
accuracy measure for Knowitall is referred to as the Hit Quality Index (HQI), and
the larger the better. The accuracy measure for the nnsD-MORPH regression is the
averaged absolute error, and the smaller the better.
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Table 13 The comparison of the solutions given by algorithm Knowitall and nnsD-MORPH regression

Components Combination coefficients Accuracy measure

Knowitall nnsD-MORPH Knowitall nnsD-MORPH

(CH2BrCl, CH2BrI, CH2Cl2) (0.13, 0.76, 0.12) (0.10, 0.71, 0.13) 973.37 0.0130

(CH2BrCl, CH2BrI) (0.23, 0.77) (0.21, 0.70) 969.12 0.0155

(CH2BrI, CH2Cl2) (0.77, 0.23) (0.72, 0.25) 968.14 0.0145

Table 13 shows that the combination coefficients and accuracymeasure obtained by
the twomethods are very consistent.However, if accuracymeasure is the only consider-
ation, wewould arrive the wrong solution CH2BrCl+CH2BrI+CH2Cl2. Sequentially
removing irrelevant species from the reference species library can help nnsD-MORPH
regression to correctly determine the mixture composition (i.e., CH2BrCl + CH2BrI,
as explained in the procedure leading to Fig. 8). The criterion for identification of irrel-
evant species is simple and efficient. However, if the mixture contains some species
in very small amounts, especially at the noise level in the data, it may be difficult
to correctly identify whether it is an irrelevant species, and the sequential removal
algorithm may fail to correctly determine the mixture composition. Nevertheless,
sequential determination by nnsD-MORPH can still give the combination solution
with the best accuracy for different sparsity.

4 Conclusion

In this paper, D-MORPH regression has been extended to determine sparse and non-
negative sparse solutions. The weight used in RRLS minimization is adopted and
modified in the construction of the cost functionK for D-MORPH regression to deter-
mine sparse and nonnegative sparse solutions. Compared to IRLS and RRLS, the
advantage of sparse and nonnegative sparse D-MORPH regression is that the matrix
� of an underdetermined linear algebraic equation system does not need to have a row-
full rank, which makes D-MORPH regression more flexible in searching for sparse
solutions in practical applications. Simulation data for quantum-control-mechanism
identification as well as experimental mass spectral data for determining the compo-
sition of an unknown mixture of chemical species were used as illustrative examples.

For composition analysis of a mixture’s MS, due to experimental errors, the correct
combination coefficients does not belong to the solutions inM and cannot be directly
determined by nnsD-MORPH regression. To solve this problem, the best solution
for each given sparsity is searched for in a sequential fashion instead of determining
a single sparsest solution. This can be achieved by reducing one species from the
reference library step-by-step, until the stable correct solution is obtained. The same
procedure could be applied to sparse mixture identification with other type of spectral
data.

Acknowledgments Support for this work was provided by ONR with Account Number N00014-11-1-
0716.

123



1914 J Math Chem (2015) 53:1885–1914

References

1. I. Daubechies, R. Devore, M. Fornasier, C.S. Güntürk, Commun. Pure Appl. Math. LXIII, 0001–0038
(2010)

2. A.E. Yagle, Non-iterative reweighted-norm least-squares local �0 minimization for sparse solutions to
underdetermined linear system of equations, http://web.eecs.umich.edu/~aey/sparse/sparse11.pdf

3. K. Mohan, M. Fazel, J. Mach. Learn. Res. 13, 3441–3473 (2012)
4. M. Fornasier, H. Rauhut, R. Ward, Low-rank matrix recovery via iteratively reweighted least squares

minimization, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.174.8001
5. H. Firouzi, M. Farivar, M. Babaie-Zadeh, C. Jutten, Approximate sparse decomposition based on

smoothed �0-Norm, http://arxiv.org/pdf/0811.2868
6. R.G. Baraniuk, Compressive sensing [Lecture Notes]. IEEE Signal Process. Mag. 24(4), 118–121

(2007)
7. E.J. Candés, Compressive Sampling, in International Congress of Mathematicians, Vol. III, pp. 1433–

1452 (2006). European Mathematical Society, Zürich
8. D.L. Donoho, Y. Tsaig, IEEE Trans. Inf. Theory 54(11), 4789–4812 (2008)
9. Y. Li, SIAM J. Optim. 3(3), 609–629 (1993)

10. H. Rabitz, O.F. Alis, J. Math. Chem. 25, 197–233 (1999)
11. G. Li, C. Rosenthal, H. Rabitz, J. Phys. Chem. A 105(33), 7765–7777 (2001)
12. G. Li, H. Rabitz, J. Math. Chem. 50, 99–130 (2012)
13. G. Li, H. Rabitz, J. Math. Chem. 48, 1010–1035 (2010)
14. G. Li, R. Rey-de-Castro, H. Rabitz, J. Math. Chem. 50, 1747–1764 (2012)
15. G. Li, C. Bastian, W. Welsh, H. Rabitz, J. Phys. Chem. A (in press)
16. C.R. Rao, S.K. Mitra, Generalized Inverse of Matrix and Its Applications (Willey, New York, 1971)
17. F.I. Kushnirskii, M.E. Primak, Regression with nonnegative coefficients. Kibernetika (Russian) 1,

151–152 (1973)
18. C. Brif, R. Chakrabarti, H. Rabitz, Adv. Chem. Phys. 148, 1 (2012)
19. R.S. Judson, H. Rabitz, Phys. Rev. Lett. 68(10), 1500–1503 (1992)
20. A. Mitra, H. Rabitz, Phys. Rev. A 67(3), 33407 (2003)
21. R. Rey-de-Castro, H. Rabitz, Phys. Rev. A 81, 063422 (2010)
22. R. Rey-de-Castro, Z. Leghtas, H. Rabitz, Phys. Rev. Lett. 110, 223601 (2013)
23. G. Li, H. Rabitz, J. Math. Chem. 52, 2052–2073 (2014)
24. G. Li et al., J. Phys. Chem. A 114, 6022–6032 (2010)
25. N. Ahmed, T. Natarajan, K.R. Rao, Discrete cosine transform. IEEE Trans. Comput. C23(1), 90–93

(1974)
26. http://www.knowitall.com/

123

http://web.eecs.umich.edu/~aey/sparse/sparse11.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.174.8001
http://arxiv.org/abs/arxiv.org/pdf/0811.2868
http://www.knowitall.com/

	Sparse and nonnegative sparse D-MORPH regression
	Abstract
	1 Introduction
	2 Sparse and nonnegative sparse D-MORPH regressions
	3 Illustrations of sparse and nonnegative sparse D-MORPH regression
	3.1 Application to mechanism identification of quantum-control simulation data
	3.1.1 Construction of high dimensional model representation (HDMR) expansion
	3.1.2 Case I: More data than unknown parameters
	3.1.3 Case II: Less data than unknown parameters

	3.2 Application to composition analysis from a mixture's mass spectrum
	3.2.1 Construction of underdetermined linear algebraic equation system
	3.2.2 Sequential determination of nonnegative and sparse solution for mixture composition


	4 Conclusion
	Acknowledgments
	References




